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Abstract

We consider the Switchboz Routing Problem (SRP)
in which terminals have some flezibility in placement
on the border. The general problem with position con-
straints is NP-complete, as is the problem with only
order constraints or separation constraints. We do
solve the problem for the case in which terminals are
permutable within prespecified groups of adjacent ver-
tices, called clusters. Whenever possible, our algo-
rithm determines a terminal assignment such that the
resulting SRP is solvable; the total time to assign the
terminals and to construct o layout is O(N log N),
where N is the number of nets. Qur results extend
to multiple layers and to conver grids.

1 Introduction

In automated VLSI design, the positions of termi-
nals on the boundary of a switchbox have tradition-
ally been fully specified at the time the routing phase
is begun (see e.g. [Fra82, MP86]). In many instances,
however, there could be flexibility in the placement
of the terminals. For instance, there may be logi-
cally equivalent terminals, such as the inputs of an
AND gate. And for VLSI designs that contain pro-
grammable function cells such as PLAs, ROMs, and
gate arrays, locations of specific terminals may be set
arbitrarily along the boundary of the cell with no ef-
fect on the cell area. Current CAD tools that compute
programmable cells usually allow the user to specify
the desired terminal order along the boundary.

It is not surprising that allowing flexibility in the
placement of terminals can lead to more efficient rout-
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ing; this strategy has been studied by a number of
people for the problem of minimizing channel routing
area (see e.g. [WLL88, CW90, CW91, HB92a]). And
[DB89] has shown that the number of vias may be
reduced when terminals are allowed to move during
the routing phase. In this work we are considering
the problem of routing switchboxes and are concerned
with the basic question of whether a switchbox prob-
lem is even routable within the given region. Unfor-
tunately, the above techniques provide no method for
converting a congested, unsolvable switchbox routing
problem into a solvable one.

Certainly a switchbox too congested to wire could
be expanded (perhaps doubling or even quadrupling
the area) to obtain a solvable problem. This type of
strategy has been used e.g. by [MP86] and [BS90)].
However, such a solution would be impractical for
switchboxes with fixed dimensions. As an alternative,
we present an algorithm that assigns the terminals,
subject to constraints, to locations along the bound-
ary of the switchbox such that the resulting routing
problem is solvable, whenever such an assignment ex-
ists. The algorithm runs in O(N log N) time, and the
result also holds when the routing region is a convex
grid (instead of a rectangle) or when overlap routing
is allowed. We show that some more general forms of
the problem are NP-complete.

2 Preliminaries
2.1 The switchbox routing problem

The well-known Switchbox Routing Problem (SRP)
is the problem of constructing edge-disjoint paths be-
tween designated pairs of terminals on the boundary
of a rectangle. The input to the problem consists of



a rectangular grid and pairs of terminals along the
boundary that specify nets to be electrically connected
by routing within the rectangle. Wires are required to
run along the vertical and horizontal edges of the grid,
and no two nets’ paths can share an edge. Paths are
allowed to knock-knee at a vertex. See Figure 1(b).

In a SRP each net is composed of exactly two ter-
minals, and we require the terminals to be assigned to
the vertices (pin locations) along the boundary of the
rectangle. We label each vertex by its (z,y) coordi-
nates in the plane, where the lower left corner of the
rectangle has coordinate (1,1). Each boundary vertex
may contain 0 or 1 terminal, except that corner ver-
tices may contain 0, 1, or 2 terminals. If a boundary
vertex contains the maximum allowable number of ter-
minals, we say that the vertex is full, and if it contains
no terminal, we say it is empty. We say two nets cross
if the line segments formed by joining each net’s ter-
minals intersect. A cut is a line separating the vertices
of the rectangle into two sets. A vertical cut (v-cut) is
a vertical line between two columns, and a horizontal
cut (h-cut) is a horizontal line between two rows. We
let d(z) denote the density of cut z, the number of
nets having a terminal on each side of the cut; cap(z)
denotes the capacity of cut z, the number of grid edges
crossing the cut. The free capacity of cut x, denoted
by fcap(z) is given by feap(x) = cap(z) — d(z). If
feap(z) = 0, then x is saturated.

Consider the SRP in Figure 1(a). There are 7
empty boundary vertices, e.g. (1,1) and (4,6). All re-
maining vertices are full, except vertex (7,6) which is
neither empty nor full. Net 5 crosses every net except
net 4. We have indicated the v-cut between columns
5 and 6 with a dotted line. The capacity of this cut
is 6 and the density is also 6, so it is a saturated cut.
We have labeled the density and parity congestion (de-
fined below) for each v-cut and each h-cut.

The cut criterion states that fcap(z) > 0 for every
v- and h-cut z. Clearly, this is a necessary condi-
tion for solvability of the problem. It is not sufficient,
however. To describe the sufficient condition, we need
more terminology.

The available degree of a vertex is the degree of
the vertex minus the number of terminals located at
it. This indicates the number of wire segments that
can be routed to the vertex. For example, consider the
left terminal of net 5 in the SRP shown in Figure 1(a).
There is one terminal located at a vertex of degree 3,
so the available degree is 3—1 = 2. Consider any v-cut
z in a SRP, and suppose there are ¢ saturated h-cuts.
This implies that the part of the grid left of z may
be decomposed into ¢ + 1 sets of vertices, 11, ..., T¢41,
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such that for all i, 1 < i < t+ 1, no two vertices of
T; are on opposite sides of any saturated h-cut. when
we consider an arbitrary h-cut in conjunction with all
v-cuts. We say T is an odd set if it contains an odd
number of vertices of odd available degree. A simple
argument shows that the number of odd sets on each
side of x is equal. We define this common number to
be the parity congestion of z, denoted pe(z).

The revised cut criterion states that fcap(r) >
pe(z) for every v- and h-cut z. A parity argument,
first presented in [Fra82], shows that this criterion is
necessary and sufficient for the solvability of a SRP.

Consider our example SRP in Figure 1(a). The ver-
tices of odd available degree have been circled. Let
z be the (arbitrarily chosen) h-cut shown. A dot-
ted line indicates the one saturated v-cut. Consider
the two sets below z: one left of the v-cut, and one
right of the v-cut. Each of the two sets contains 1
vertex of odd available degree, so pc(z) = 2. Since
feap(z) = 7— 17 = 0, the revised cut criterion does
not hold, and indeed the SRP is unroutable. Moving
a single terminal results in the solvable SRP shown in
Figure 1(b).

2.2 The terminal assignment problem

Often, a SRP does not satisfy the revised cut cri-
terion and cannot be successfully routed. However,
by taking advantage of inherent flexibilities in the
placement of terminals along the boundary, the SRP
might be made solvable. We now offer a description of
the terminal assignment problem (TAP) for switchbox
routing. As for the SRP, the input to the problem con-
sists of a rectangular grid and N nets each with two
terminals along the boundary. Position constraints
are given by sets By of allowable terminal locations:
P = {By C {boundary vertices} : 1 < k < 2N}. The
kth terminal, £, can only be assigned to vertices in
By.

A TAP assignment is a function f describing the
assignment of terminals to vertices on each boundary
of the switchbox such that the position constraints are
satisfied and such that no vertex has more than the
allowable number of terminals located at it, i.e. for all
k,1 <k < 2N, we have f(tx) € Bs.

If a solution to the TAP is such that the revised cut
criterion holds, we say the terminals have a successful
assignment, indicating that the resulting SRP is solv-
able. Our goal is to produce a successful assignment
whenever one exists.
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Figure 1: (a) An unroutable SRP. (b) A similar but routable SRP.

3 Solving the TAP
3.1 The general problem is NP-complete

Unfortunately, the problem of finding a successful
assignment is NP-complete. In [AH87], Atallah and
Hambrusch introduce a problem in which each termi-
nal has two possible locations (i.e., |Bx| = 2 for all k),
not necessarily adjacent, and show that the problem
of minimizing density is NP-complete. Their argu-
ment was given for channel routing problems (switch-
boxes with no terminals on the left or right sides),
but solving channel routing problems in general can
be no harder than solving SRP’s, since it is a special
case of the SRP. Also, their work only addresses the
minimization of density, not the sufficient conditions
for routability, but a simple modification of their ar-
gument (for example, requiring every other vertex on
the top and bottom boundary to be empty) equates
density with required channel width. Therefore, the
problem of finding a successful assignment of terminals
on a switchbox is NP-complete.

3.2 An algorithm for a special case

Although the general problem is NP-complete, we
are able to solve an important special case of the prob-
lem. Sets of adjacent border vertices called clusters
are specified. A cluster may contain any number of
vertices, but may not contain vertices on both sides
of a corner vertex. Each terminal belongs to a unique
cluster and may be assigned to any vertex within the
cluster. That is, if two terminals ¢; and ¢; belong to
the same cluster, then B; = B;.
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We shall provide an algorithm which solves the clus-
ter TAP and prove that the assignment is successful,
whenever a successful assignment exists. Without loss
of generality, we shall assume that no net IV; has both
its terminals in the same cluster. If this did occur,
then N; could be trivially routed simply by placing
both of N;’s terminals at adjacent vertices.

Consider a given assignment for a problem. If the
assignment contains crossing nets and these nets have
terminals in the same cluster, we may uncross the nets
by permuting the two terminals in that cluster. It is
not hard to show the following:

Lemma 1 Uncrossing the nets does not increase the
density or parity congestion of any v- or h-cut.

We now present our algorithm, which is applied to
a single cluster at a time. Due to space limitations,
the presentation is informal and all proofs are omitted.

Algorithm ASSIGN

Step 1. Permute the terminals in the cluster such
that no two nets that each have a terminal in the clus-
ter cross.

Step 2. Slide the terminals to the counterclockwise
side of the cluster, forming full vertices.

Step 3. Starting with the terminal furthest clock-
wise in the cluster (and then proceeding counterclock-
wise) slide the terminal clockwise to the vertex in the
cluster which minimizes the length between it and its
corresponding terminal, but never placing the termi-
nal at a vertex that is already full.

As an example, a default assignment of termi-
nals is shown in Figure 2(a), representing a possible



“congestion-oblivious” assignment. In fact, this SRP
is not solvable, for the v-cut between columns 2 and 3
has capacity 6 and density 8. However, if terminals are
permutable within the indicated clusters, algorithm
ASSIGN obtains the terminal assignment shown in
(b), and the resulting SRP is easily routable.

Theorem 1 ASSIGN minimizes the density of any
v- or h-cut. In fact, ASSIGN produces a successful
assignment for a SRP, if one exists.

ASSIGN is an efficient algorithm, requiring only the
time of a sorting algorithm, O(Nlog N), where N is
the number of nets. Mehlhorn and Preparata [MP86]
provide a O(N log N) time algorithm for constructing
a layout if one exists, so we have the following:

Corollary 1 We may determine in O(Nlog N) time
whether a TAP has a successful assignment; if it does,
then the assignment and corresponding layout take
O(Nlog N) time to compute.

4 More general problems
4.1 Convex grids and overlap routing

We may extend our results to regions more general
than the rectangle. A grid is convez if any two vertices
in it can be joined by a path with at most one bend
(see e.g. [LS87]). We also may extend our results to
new multilayer routing technologies in which k wires
can be routed along the same edge of the grid. We
have the following:

Theorem 2 ASSIGN produces a successful assign-
ment for a k-ary overlap convez grid routing problem,
if one ezists. A successful assignment and layout take
O(Nlog N) time to compute.

4.2 Order and separation constraints

As we have seen, clusters of permutable terminals
model some of the flexibilities that naturally occur
in VLSI design. There are other flexibilities that
we have not yet mentioned. When there are several
functional modules on the same side of a switchbox,
the left to right order of these modules might not be
fixed. For example, when two modules with the same
height abut a common border of a routing region,
we may interchange them. Furthermore, the sepa-
ration between two adjacent modules is also variable
[CW91, HB92a, She92]. These flexibilities cannot be
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modeled by position constraints alone. We introduce
two new types of constraints.

The first type of constraint is the order constraint,
given by O = ({t1,...,t2n }, <), a partially ordered
set. This constraint associates a pair of terminals
with the clockwise order the terminals must appear
on the boundary. That is, if ¢; < tj, then a clockwise
scan of the boundary starting at vertex (1,1) must en-
counter terminal ; before terminal ¢;. In our work,
it is not necessary that the relation be defined for ev-
ery pair of terminals; if it is not defined, then either
order is acceptable. This constraint may model cells
whose relative ordering along the boundary is fixed,
but whose internal terminals may be permuted. It
may also model cells which may be permuted along the
boundary, but whose internal terminals have a fixed
order.

The second type is the separation constraint, given
by S, which associates with each terminal the mini-
mum and maximum distance that a neighboring ter-
minal may be assigned. For example, for a terminal ¢;
on the top boundary, if S(¢;) = (2, 10), then an assign-
ment of ¢; to the vertex at column ¢ implies that the
terminal adjacent to t; on the left must be assigned
to a vertex at a column between columns ¢ — 10 and
¢ — 2. This constraint may model terminals which are
at fixed distances from each other, such as terminals
of a custom cell. It also may model the designer’s de-
sire to keep groups of wires near each other, and the
need for extra space to accommodate wires of varying
thicknesses.

The TAP, when subject to position and order con-
straints, was shown in [CW90] to be NP-complete.
We improve their result by showing that the prob-
lem remains NP-complete when there are no position
constraints at all; we call this the Order Constraint
Problem (OCP). Finally, the problem with separation
constraints is also NP-complete, even when there are
no position or order constraints; we call this the Sep-
aration Constraint Problem (SCP).

Theorem 3 OCP is NP-complete.

Theorem 4 SCP is NP-complete.

5 Conclusions

We have given an algorithm that assigns the termi-
nals to the boundary of a switchbox such that the re-
sulting SRP is routable, whenever such an assignment
is possible. The terminals have position constraints
within prespecified groups of adjacent vertices. This
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Figure 2: (a) A SRP with a default terminal assignment. Lines are drawn between terminals forming nets. (b)
The problem after terminal reassignment. Note that no two nets from the same cluster cross.

is the first work we know of that relates movable termi-
nals to the routability of a switchbox. Previous work
on movable terminals has been done for channel rout-
ing, and usually involved density minimization only,
whereas the problem in the switchbox requires both
density and parity congestion minimization.

Position constraints more general than adjacent-
vertex position constraints (i.e., clusters) result in an
NP-complete problem, and we show that order con-
straints and separation constraints each result in NP-
complete problems as well, even when there are no
constraints on position. These results hold even for
the channel routing problem, and even if every net
has one terminal on the top boundary and the other
on the bottom boundary. The algorithm and the NP-
completeness results can be extended to routing in a
convex grid and to overlap routing.

There are a number of open problems, including ex-
tensions to nonconvex regions and multiterminal nets.

Acknowledgement: We would like to thank Majid Sar-
rafzadeh for suggesting the switchbox TAP.
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